Non-Nulling Measurements of Flue Gas Flows in a Coal-Fired Power Plant Stack

Flomeko

Lisbon, Portugal Jun 28, 2019

Aaron Johnson (NIST)

Work sponsored by NIST & EPRI (Electric Power Research Institute)

1) Background and Motivation

2) How are stack emissions measured? What makes stack measurements difficult?

3) What is the Non-Nulling Method? How does it work?

4) Results of Field Test at a Coal-Fired Power Plant

1) Background and Motivation

2) How are stack emissions measured? What makes stack measurements difficult?

3) What is the Non-Nulling Method? How does it work?

4) Results of Field Test at a Coal-Fired Power Plant

Background

3 Tier Approach to Improve Stack Flow Measurements

1) Study different probe types in NIST Wind Tunnel

- S-Probe
- 3-D Probes (e.g., Prism & Spherical Probes)
- NIST Custom Probes
- Nulling and Non-nulling Methods

2) Evaluate the Capabilities of Various Stack Flow Measurement Technologies in NIST Scale Model Smokestack Simulator (SMSS)

- Facility generates complex flows typical of stacks
- Facility uncertainty < 1% (k = 2)
- Only has a 1.2 m test section & uses ambient air

3) Collaborate with EPRI to apply NIST results to Coal-Fired Smokestacks

1) Background and Motivation

2) How are stack emissions measured? What makes stack measurements difficult?

3) What is the Non-Nulling Method? How does it work?

4) Results of Field Test at a Coal-Fired Power Plant

What makes Stack Flow Measurements Difficult?

(Stack flows are complex and have significant "installation effects" on flow meters)

How are stack emissions measured?

- Pitot Probe traversed along two orthogonal diameters in stack cross section
- Velocity determined at discrete points based on differential pressure measurements across pitot probe ports
- Flow determined by integrating point velocity measurements

3 EPA Approved Pitot Probes

S-probe

Prism Probe

Spherical Probe

- S-probe (Most Commonly Used Probe)
 - o Robust
 - Performance degrades in high pitch stack flows (2-D probe)
- Prism & Spherical Probes (Rarely Used)
 - Requires calibration but measures 3-D velocity vector

ALL PROBES CURRENTLY USE NULLING PROCEDURE TO FIND YAW ANGLE

What is the Nulling Method for 3D Probes (EPA Method 2F)?

- Nulling the Probe is time intensive and increases measurement time
- In practice nulling a probe can require several iterations
- Velocity errors increase as ratio $(P_2 P_3)/P_{dyn}$ departs from zero

1) Background and Motivation

2) How are stack emissions measured? What makes stack measurements difficult?

3) What is the Non-Nulling Method? How does it work?

4) Results of Field Test at a Coal-Fired Power Plant

Non-Nulling Method

1) NIST developed a non-nulling method for 3-D probes (no need to "null" probe)

Benefits

- Potential improved accuracy over S-probe
- Less human errors
- Potential improved accuracy over Nulling Method used for 3-D probes
- Reduced the overall measurement time

- 2) Non-Nulling Method needs to be validated in industrial smokestacks stacks
- 3) EPRI organized a field test at a coal-fired stack

How is the Non-Nulling Method Implemented & How does it Work?

• Measurements are made with P1 aligned with stack axis (Yaw angle = 0) (No need to rotate probe to find $P_2 - P_3 = 0$ at each traverse point)

 $V_{\text{axis}} = \sqrt{2P_{\text{dyn}}/\rho} \cos(Yaw) \cos(Pitch)$

• Dynamic Pressure, Yaw and Pitch are curve fits to differential pressures

Non-Nulling 4 Pressures (NN4P) $P_{dyn} = P_{dyn} (P_{12}, P_{13}, P_{14}, P_{15})$ $Yaw = Yaw (P_{12}, P_{13}, P_{14}, P_{15})$ Pitch = Pitch $(P_{12}, P_{13}, P_{14}, P_{15})$

• Each probe is calibrated in NIST Wind Tunnel

o non-nulling curve fit is based on 3000 wind tunnel measurements

• Fitted Range: $V_{\text{axis}} = 5 \text{ m/s to } 30 \text{ m/s}$, $Yaw = \pm 42 \text{ deg}$, and $Pitch = \pm 20 \text{ deg}$

NIST Custom Probes

Five Hole Hemispherical Probe

5-hole Conical Probe

NIST developed two custom 5-hole probes

1) Background and Motivation

2) How are stack emissions measured? What makes stack measurements difficult?

3) What is the Non-Nulling Method? How does it work?

4) Results of Field Test at a Coal-Fired Power Plant

Field Test at a Coal-Fired Power Plant (500 MW)

H/D =19.3

D = 6.8 m

Measurement

3.8 D fro elbow

Platform

- Test probes at full load (17 m/s) and low load (6 m/s)
- Flow from stack flow monitor (CEMS) used to normalize velocity data (CEMS was calibrated by S-probe by prior to our testing)

Probes Tested

- Spherical probes
- NIST custom probes (hemispherical and conical)

Objectives

- Compare Non-Nulling vs. Nulling (EPA Method 2F)
- Compare Spherical vs. NIST custom probes

Developed Rugged Data Acquisition System for Field Test

DP transducers

Toughbook

Equipment housed in a water-proof box

Key Features

- o Industrial grade differential pressures
- o 4-way valves
- Weather-proof Laptop
- LabVIEW data acquisition program (Sample rate 10Hz)

Measurement Equipment Installed in Annulus Between Stack and Outside

What are the Challenges of Field Conditions?

1) Asymmetric swirling flow

2) Plugging due to water droplets/particulates

- Power plant equip with wet scrubber
- Purges necessary to clear probe ports of water droplets & particulates
- 3) Flow fluctuations (Unsteady)
- 4) Noisy pressure signals & short measurement times (10 sec)

4000

Axial Velocity for Spherical Probes at High Load, 17 m/s

V _{Probe} /V _{CEMS}	Nulling M2F	Non-Nulling NN4P@0yaw	Non-Nulling NN4P@null
Average	0.994	0.994	0.984
% Stdev 4 runs	1.6 %	0.2 %	0.8 %
% Deviation from CEMS	-0.6 %	-0.6 %	-1.6 %

Axial Velocity for Spherical Probes at High Load, 17 m/s

Normalized axial velocity profiles were similar

- o for low load Sphere: Nulling (Method 2F) and Non-Nulling
- o for NIST Probes at low and high flows: Nulling and Non-Nulling
- Velocity differed for NIST probes determined using Method 2F (Nulling) at high and low loads

Summary of Results

(% Deviation of Average Flow from CEMS)

Probe Type	Flow Load	Nulling M2F	Non-Nulling N4Pv@0yaw	NN4Pv@null
Spherical Probes	17 m/s	-0.6 %	-0.6 %	-1.6 %
Spherical Probes	6 m/s	1.9 %	2.8 %	-1.5 %
NIST Probes	17 m/s	5.3 %	-0.8 %	-1.5 %
NIST Probes	6 m/s	10.5 %	-0.6 %	-3 %

• In all cases Non Nulling results are in good agreement with stack flow monitor (CEMS)

• Nulling (Method 2F)

Good agreement of M2Fnist and Non-Nulling for spherical probes

 \circ Poor Nulling of NIST Probes (P23 ≠ 0) likely cause of bias

1) Background and Motivation

2) How are stack emissions measured? What makes stack measurements difficult?

3) What is the Non-Nulling Method? How does it work?

4) Results of Field Test at a Coal-Fired Power Plant

Conclusions

1) Non-Nulling Method performed well for all flows and all probes

- Minimum 16 point traverse was performed
- Better accuracy could potentially be realized if more traverses points are used (especially more points close to the wall to account for the boundary layer)
- 2) Non-Nulling results are similar to those found in NIST Stack simulator suggesting that flow results found in SMSS facility translate to the field

3) Nulling (Method 2F) vs. Non-Nulling Results ○ Good agreement for Spherical probes ○ Poor agreement for NIST probes likely due to imperfect nulling (P23 ≠ 0)

4) CEMS flow monitor (calibrated by an Sprobe) likely does a reasonable job because the measured pitch angle in the stack was small

Pitch Angle for Spherical Probes at High Load, 17 m/s

- 1) Non-Nulling and Method 2F in good agreement on both chords
- **2)** Magnitudes of pitch angle are relatively small (maximum value of 5°)
- 3) S-probe calibrated **CEMS likely gives reasonable flow results**
- 4) NIST probes exhibited similar trends at high and low loads, nulling and non-nulling

Yaw-Null Angle for Spherical Probes at High Load, 17 m/s

- Non-Nulling and Method 2F profiles are similar with extremum values near stack wall (~ -30°)
- 2) Differences between Method 2F and Non-Nulling at yaw=0 are small near stack axis and grow to as much 7° near wall
- 3) NIST probes gave similar results at high and low loads

RATA Testers and Probe Traversing

- All testing was performed by Air Flow Science
- The Multiple Automated Probe (MAP) was employed to perform probe traverses
- NIST and Air Flow Science used separate data acquisition systems

- Manually time synchronized data acquisition systems at the start of testing
- MAP system output DC voltages to NIST system to indicate traverse point

Stack Test Protocol

• A single probe installed in each of the 4 Ports

- o Spherical Probes in all Ports
- o NIST Probes (Hemisphere in Ports 1 & 3 and Conical in 2 & 4)

• 8 Traverse points along two diametric chords

• Traverse unit moves probe to specified point

- Traverse unit rotates probe to a zero yaw angle
- Stack velocity measured via Non-Nulling (NN4Pv@0yaw)
- Traverse unit "*nulls the probe*" (yaw angle where $P_2 P_3 = 0$)
- Stack velocity determined via Method 2F (M2Fnist)
- Simultaneously stack velocity determined via Non-Nulling (NN4Pv@null)

- Procedure repeated at each traverse point: 3 velocities are measured at each point
 - \circ 3 measured velocities: $V_{NN4Pv@0yaw}$, $V_{M2Fnist}$, and $V_{NN4Pv@null}$
- Probe velocities are normalized by CEMS (V_{CEMS}) to help account for unsteady flow